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Abstract

We present a study of the relationship between
gender, demographics, and linguistic styles,
using a corpus of scientific writings. Prior em-
pirical work on gender treats it as an unchang-
ing binary opposition. In contrast, we present
an approach that views gender as a social iden-
tity. Drawing inspiration from theories in so-
cial psychology, we find that aspects of inter-
gender linguistic differences as well as com-
monalities change with shifting gender demo-
graphics of a group. This integration of em-
pirical methods with social theories offers new
insights into how gender transpires in response
to and/or as a reinforcement of social groups.

1 Introduction

A formidable body of work in sociolinguistics has
argued that there is a connection between language
and social identities such as gender, ethnicity, and
age. With the vast amount of data becoming
increasingly available, large-scale computational
analyses of such connections have flourished. The
primary goal is to either build predictive models of
these social attributes or to understand stylometric
differences. Several predictive models have been
impressively accurate. However, they present an
overly simplistic picture of the relation between
language use and these attributes.

We present a study of the relation between lan-
guage, demographics, and a salient social identity
– gender (Sherif, 1982; Deaux, 1984). In doing
so, we address an important constraint of previous
computational analyses of language and gender.

Prior work has focused on lexico-syntactic dif-
ferences between the language use by women and
men, but based only on gender. This creates a
threefold problem: (i) it amplifies the perceived
gender differences without accounting for over-
lap, thereby leading to stereotypical interpreta-
tions (Koolen and van Cranenburgh, 2017), (ii)
it does not account for linguistic differences that

may be due to different social contexts (e.g., Baker
(2014, p. 30)), and (iii) the analyses rest on the a
priori assumption that ‘women’ and ‘men’ are al-
ways distinct and stable binary categories (Bam-
man et al., 2014; Larson, 2017). Further, this dis-
regards social theories and evidence from qualita-
tive studies that gender can be performative (But-
ler, 2011), and thus emerging as a response to
social contexts and objectives while at the same
time, being constrained by them (Brewer, 1991;
Leonardelli et al., 2010). Our study uses formal
scientific literature from a single domain to con-
trol for the writers’ external social context. We
find that linguistic differences change in style as
well as magnitude when the demographics of the
social group change.

2 Further Related Work

There is a long history of qualitative (e.g., Tannen
(1990)) and quantitative (Pennebaker et al., 2003;
Argamon et al., 2003) work connecting gender
and language use. Both bodies of work have pre-
sented general characteristics of gender-specific
language use. Computational approaches, too, an-
alyzed such differences and have been success-
ful at developing classifiers (Mukherjee and Liu,
2010; Sarawgi et al., 2011; Bergsma et al., 2012).

The latter has taken what is dubbed the “folk”
view of gender (Larson, 2017). But if one takes
the performative view of gender, studies must ac-
count for the behavioral aspects (which would in-
clude language use) change vis-á-vis social con-
text.Outside of qualitative studies, only a very few
have adopted this. Notable among them are El-
lis (2009), Filippova (2012), and Bamman et al.
(2014). This body of work, however, investigates
general social media, where linguistic variation
exists due to a multitude of uncontrollable factors.
Associating language with any social identity un-
der such circumstances can be misleading, as has
been argued in detail by research in sociolinguis-
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tics (such as Eckert (2008), among others). In
terms of analysing gender as a social identity, our
work is similar in spirit to Bamman et al. (2014).
But, while they present insightful results of cases
where gender-based linguistic behavior changes,
their model falls back on analyses of word classes
instead of exploring deeper linguistic constructs.

Due to the above factors, we focus on a domain
that reflects language use by a well-defined com-
munity where most writers are likely to have less
influence on their writing styles from outside the
community – scientific writings. Unlike Sarawgi
et al. (2011) or Bergsma et al. (2012), who also
looked at such texts, we explore two new frontiers
in terms of model building. First, we work with a
much larger dataset by including documents with
multiple authors. This allows us to study how the
stereotypical characterization of language-gender
links changes when the gender composition of au-
thors change. Second, we explore non-lexical syn-
tactic features to control for topic. Not doing
so can falsely attribute stylometric traits to social
identities like gender, as was explicitly demon-
strated by Herring and Paolillo (2006).

3 Data

Our research is based on analyses of the ACL An-
thology Reference Corpus (Bird et al., 2008). The
goal was to create a subset such that the articles
pertain to research findings, and are comparable
in terms of the complexity or magnitude of the
scientific work being presented, so we filtered out
front/back matter files and student workshop pub-
lications. We also excluded articles whose abstract
and introduction sections put together consisted of
fewer than 500 characters To assign gender to the
authors, we only considered first names. For gold-
standard labels, we used historical census infor-
mation from U.S. Social Security Administration
data from 1880 to 2016.A large fraction of these
names are gender-neutral, so we adopted the fre-
quentist approach, and assigned a score s ∈ [0, 1],
with 0 and 1 indicating exclusively male and ex-
clusively female names, respectively. The score is
simply the ratio of women with a specific name to
the total number of people with that name in the
corpus. For example, “Alex” and “Laurel” were
scored at 0.0311 and 0.9589, respectively. Since
this data does not cover all international names, we
also included unambiguous name-gender associa-
tions from http://www.behindthename.com. If

—Dataset— —Characteristics—

D1 4,578 articles
7,463 unique authors

D2 1,739 articles with all-male authorship
362 articles with all-female authorship

Table 1: Dataset Overview

a name was not found in either resource, we as-
signed it a gender score of s̄corpus = 0.2477, which
is the gender ratio in the entire collection of author
names from the corpus.

Finally, articles were discarded if all authors
were assigned s̄corpus. Applying all these filters
yielded our first dataset. We also created a smaller
set composed of articles with single-gender au-
thorship. This was done by further discarding arti-
cles for which the weighted mean gender score of
all authors was 0.05 ≤ s̄ ≤ 0.95. The two datasets
are described as D1 and D2 in Table 1. Observa-
tions across all gender ratios (Sec. 4.1) are drawn
from D1, and the remainder uses D2.

4 Linguistic Indicators of Gender

Given the domain and genre of our dataset, in-
cluding lexical features would reveal the topics
discussed in an article. In other words, lexical
features are associated with topics, which are in
turn associated with the authors. To control for
the topics, we focus exclusively on syntactic fea-
tures. Unlike previous work on language and gen-
der, the instances in our data have multiple au-
thors. We therefore extended the idea of gen-
der being represented by a numerical value in
[0, 1]. This was done taking a weighted average
of the gender scores of all the authors. If an ar-
ticle d was written by a1, . . . akd (in order of au-
thorship), the article’s gender was represented by
(
∑

i∈[kd]wisi)/kd, where si is the gender of the
ith name. The weights were decided on held-out
data, and the results presented here used w1 = 0.5,
wkd = 1, and wi = 0.25 for all 2 ≤ i ≤ kd.

The common approach taken by computational
work in language and gender has been to first pro-
duce a predictive model and then perform a pos-
teriori analysis of the discriminatory power of its
features. Instead, we start by looking at the widely
used ‘involved’ and ‘informational’ features.

4.1 Syntactic Features

The involved dimension comprises frequent use
of 1st- and 2nd-person pronouns (Hirschman,
1994; Argamon et al., 2003), present and past
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Figure 1: Variational use of ‘informational’ language.

tense (Biber et al., 1998; Newman et al., 2008),
intensive adverbs (Mulac et al., 2000), personal
pronouns (Newman et al., 2008), and conjunc-
tions (Ireland and Pennebaker, 2010). Informa-
tional language, on the other hand, is characterized
by a predominance of nouns, prepositions, and 3rd-
person pronouns (Biber et al., 1998; Hirschman,
1994). Fig. 1 shows that this standard character-
ization of male and female language use varies
with gender demographics. In course of this anal-
ysis, we also investigated other parts of speech,
and found that women’s language exhibited higher
usage of wh-adverbs, possessive pronouns, and
subjective and objective pronouns. Since multi-
ple features were correlated with gender, we ap-
plied Bonferroni correction (Dunn, 1961). After
the correction, however, they were not significant.
In spite of the above observation, due to some
promising results with deep syntactic features pre-
sented by Sarawgi et al. (2011) and Bergsma et al.
(2012), our next step was to investigate whether or
not complex stylometric aspects of language vary
with changing gender demographics.

To control for topic, we focused on inter-
pretable stylometry that has not seen much usage
in computational methods. To this end, we used
features from rhetorical theory explored by Feng
et al. (2012) since their work distilled deep syntac-
tic features from the same dataset (albeit for author
identification). Upon investigating the distribu-
tion of different sentence structures as well as tree
topological features, we found that like shallow
syntax, these were correlated with demographic
changes too, but were not statistically significant
after Bonferroni correction.

4.2 A Predictive Model for Gender

After exploring rhetorical structures of syntax and
the standard characterization, and failing to ob-

Precision Recall
Women 0.81 1.0

Men 1.0 0.76
Total 0.91 0.88

Table 2: Confusion matrix of the SVM classification model.

tain statistically significant correlation with gen-
der, we developed two classification models be-
yond the baseline: a feed-forward neural network
(NN), and a support vector machine (SVM) classi-
fier. Here, we were careful to model gender as the
independent variable in order to avoid the kind of
biases posited recently by Koolen and van Cranen-
burgh (2017). This approach is along the lines of
the large-scale analyses of gender and language in
social media undertaken by Bamman et al. (2014).

The dependent variables formed the feature
space in which articles from the sub-dataset D2
were represented. In addition to the syntactic fea-
tures discussed in the earlier sections, we included
parent-child bigrams from non-leaf production
rules from constituency parse trees, dependency-
label bigrams, part-of-speech bigrams, tree depth,
mean sentence length, and the number of sen-
tences. The constituency and dependency parse
trees were generated using the Stanford CoreNLP
Toolkit (Manning et al., 2014). As Table 1 shows,
the dataset is highly imbalanced in favor of male
authorship, so before training, we oversampled the
articles written by women. We explored a percep-
tron classifier as a baseline, a feed-forward neu-
ral network, and a support vector machine (SVM)
classifier. The perceptron model yielded a 54%
accuracy. For the neural network model, we used
an input layer of the size of the feature vector,
and two hidden layers of 100 and 10 nodes, re-
spectively. This model was trained with back-
propagation, and with rectifiers (relU) as the ac-
tivation function. With 10-fold cross-validation,
this model achieved an accuracy of 76.75%.

Our best classifier was the SVM model. We
used L2-loss. The feature vectors were built with
TF-IDF encoding, and normalized to unit length.
To avoid overfitting, we used L2 regularization
with the parameter selected by the “warm-start”
algorithm (Chu et al., 2015) recently added to LI-
BLINEAR (Fan et al., 2008). The final model
was selected by 10-fold cross-validation, which
achieved 90.02% accuracy. The complete confu-
sion matrix is shown in Table 2. Since there is no
prior work for gender attribution on multi-author
documents, we do not include external baselines.
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PCFG Segments Dependency-label Bigrams

Women Men Women Men

VBZ →: VP → JJ dep → neg acl → cop
JJR → TO ADJP → RB conj → csubj ccomp → cc:preconj
JJR → RB RBR → NNS ccomp → case nmod:tmod → nmod
VBG → VBD VBG → RBR nmod:tmod → nummod dep → parataxis
PRP → DT NP → ADJP advmod → neg acl:relcl → det
VBD → PRP$ NP → VB cc → dep cc:preconj → neg
VBP → RBR PRP → IN csubj → mark dobj → nmod:npmod
JJ → WDT CD → NNP dobj → neg appos → advmod
PRP → JJ JJS → VBN nmod → dobj parataxis → advmod
NN → JJR WP → NN acl:relcl → nmod:tmod dep → csubjpass

Table 3: Top 10 PCFG production segments and dependency-label bigrams for distinguishing women’s and men’s writing.

Since in linear SVM, feature weights indicate
significance (Chang and Lin, 2008), we were able
to extract significant features for both genders (Ta-
ble 3). Even though possessive pronouns (PRP$)
were not significantly associated with women’s
writing after applying Bonferroni correction, it ap-
pears in one of the most significant production
rules indicative of female authorship. Similarly,
intensive adjectives (JJR and JJS) are also asso-
ciated with women’s writing. It is worth not-
ing that both have been regarded as components
of ‘involved’ language in prior qualitative work.
Analogously, nouns and cardinals appear in five of
the top ten PCFG segments associated with men’s
writing. Similar observations may be made re-
garding the dependency features. For instance,
men’s writing seems to favor complex structures
like relative clauses, parataxis, and appositives.

4.3 Longitudinal Analysis

Thus far, our analyses showed that (a) standard
characterization of language and gender in ‘in-
volved’ and ‘informational’ terms does not fit col-
laborative use of language in scientific writing.
But, similar features may still be found if we
explore deep syntactic distinctions between all-
male and all-female writings. This, however, ac-
counted only for the demographic changes within
each document’s authorship, not for any shifts in
the gender demographics of the community as a
whole. In this section, we study whether the
gender-ratio in the community as a whole has
any effect on how much the writing style of men
and women changes. To answer this, we con-
sider three probability distributions per year, from
1980 to 2015. These distributions are formed over
the same feature space used by the SVM model.
They are obtained by computing, for each year, the
mean feature vectors of (i) all articles, (ii) articles
with all male authors, and (iii) articles with all fe-

male authors. For a year y, let us denote these by
Py, Py,f , and Py,m. We would like to see if the
change in gender demographics between the years
y and y + 1 correlates with changes in these dis-
tributions. To measure such changes, we compute
the Kullback-Liebler (KL) divergence between Py

and Py+1 (and similarly for Py,f and Py,m).
The null hypothesis is that male and female

writing does not change any differently than that
of the whole community. Fig. 2 shows this is not
true. We observe a negative correlation of -0.34
between the (i) change in the number of women
writers and the (ii) magnitude of change in their
language. Changes in men’s language use (not
shown) was far less conspicuous.

1980 1985 1990 1995 2000 2005 2010 2015
Year
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Figure 2: Annual changes in aggregate writing styles.

5 Conclusion
We have viewed gender as a social identity and an-
alyzed a domain where gender attribution is much
harder due to multi-author documents and the for-
mal writing. We also showed that standard charac-
terization of language and gender may not be sta-
ble, and change hand-in-hand with demographic
changes. These changes affecting language use
can be both within a small group or the larger com-
munity. The fact that the minority gropu exhib-
ited larger changes may be due to out-group be-
havior (Tajfel and Turner, 2004). This, however,
required further in-depth research into the matter.
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